Lecture 13 (Jan 4)

Erlang B via Markov chain and discrete-time approximation Call initiation : Poisson process with rate λ request
aggregated rate
(total)
combination of rates from all users.

Assume: Infinite users.

0

Example $m=2$

$$
\begin{aligned}
& p_{0} \times \lambda \delta=p_{1} \mu \delta\left\langle p_{1} \lambda \hbar=p_{2} 2 \mu \hbar\right. \\
& P_{1}=P_{0} \frac{\lambda}{\mu}=A P_{0} \\
& p_{2}=\frac{\lambda}{2 \mu} p_{1}=\frac{1}{2} A p_{1} \\
& =\frac{1}{2} A \times A P_{0}=\frac{1}{2} A^{2} P_{0} \\
& \begin{array}{c}
P_{0}+P_{1}+P_{2}=1 \\
P_{0}+A P_{0}+\frac{1}{2} A^{2} P_{0}=1 \Rightarrow P_{0}=\frac{1}{1+A+\frac{1}{2} A^{2}}
\end{array} \\
& p_{1}=A p_{0}=\frac{A}{1+A+\frac{1}{2} A^{2}} \\
& P_{2}=\frac{\frac{1}{2} A^{2}}{1+A+\frac{1}{2} A^{2}} \\
& A^{m}
\end{aligned}
$$

In general, m channels $\Rightarrow P_{m}=\frac{\frac{A}{m!}}{\sum_{k=0}^{m} \frac{A^{k}}{k!}}$
Engset Model (Engsett)

- Finite users: N users.
- Each user generate new call request with rate λ
(might be better to call it λ_{m})
- m channels
- call duration $\sim \varepsilon(\mu) \quad\left(\right.$ average $\left.=\frac{1}{\mu}\right)$

$$
\begin{aligned}
& P_{0} \times \lambda N \delta=P_{1} \times \mu t \\
& P_{1}=P_{0} \frac{\lambda N}{\mu}=P_{0} A N / \\
&=A \frac{(N-1)}{2} N A p_{0} \\
& P_{2} \times \lambda(N-1) t=P_{2} \times 2 \mu t \\
& P_{3}=\frac{\lambda}{2} \frac{N-2}{3} \times P_{2} \\
&=A \frac{N(N-1)}{2} P_{1} \\
&=\binom{N}{2} A^{2} P_{0} \\
&=A_{0}^{3} \frac{N(N-1)(N-2)}{2} P_{0}=A_{0} \\
& 3 \times 2 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& P_{k}=A^{k}\binom{N}{k} P_{0} \quad 0 \leqslant k \leqslant m \\
& \sum_{k=0}^{m} p_{k}=1 \Rightarrow \sum_{k=0}^{m} A^{n}\binom{N}{k} p_{0}=1 \\
& p_{0}=\frac{1}{\sum_{k=0}^{m}\binom{N}{k} A^{k}} \\
& \text { Normalization } \rightarrow Z(m, N) \\
& \text { factor } \\
& p_{k}=A^{k}\binom{N}{k} p_{0}=\frac{A^{k}\binom{N}{k}}{z(m, N)} \\
& p_{m}=\frac{A^{m}\binom{N}{m}}{z(m, N)} \leftarrow \frac{\text { time congestion probability. }}{\text { call bock probability }}
\end{aligned}
$$

To find call blocking probability, consider s slots (s is very large) about $p_{k} \times \delta$ slots will be in state k.

Each of this will have a new call request with probability

$$
\begin{aligned}
&(N-k) \lambda \delta \\
& \text { Total new calls }=(N-k) \lambda \delta \times\left(p_{k} \times s\right) \\
& \times \text { new calls }= \sum_{k=0}^{m}(N-k) \lambda \delta p_{k} s \\
& \text { Blocked call proportion call }=(N-m) \lambda \delta \times\left(\rho_{m} \times s\right) \\
& \quad(\text { probability })
\end{aligned}
$$

$$
\begin{aligned}
& \text { (probability) } \sum_{k=0}^{m}(N-k) \nless s p_{k} \times \beta \\
&= \frac{(N-m) p_{m}}{\sum_{k=0}^{m}(N-k) p_{k}} \nleftarrow \\
& \text { call congestion }
\end{aligned}
$$

For Erlang $B,=\frac{P_{m}}{\sum_{k=0}^{m} P_{k}}=P_{m}$

